Novel method of generation of Ca(HCO3)2 and CaCO3 aerosols and first determination of hygroscopic and cloud condensation nuclei activation properties

نویسنده

  • D. F. Zhao
چکیده

Atmospheric mineral aerosols contain CaCO3 as a reactive component. A novel method to produce CaCO3 aerosol was developed by spraying Ca(HCO3)2 solution, which was generated from a CaCO3 suspension and CO2. By aerosol mass spectrometry the freshly sprayed and dried aerosol was characterized to consist of pure Ca(HCO3)2 which under annealing in a tube furnace transformed into CaCO3. Transmission Electron Microscopy demonstrated that the particles produced were spherical. The method was able to generate aerosol of sufficient concentration and proper size for the study of physiochemical properties and investigations of heterogeneous reactions of mineral aerosol. The dried Ca(HCO3)2 particles were somewhat more hygroscopic than CaCO3 particles. However, during humidification a restructuring took place and ∼2/3 of the Ca(HCO3)2 was transformed to CaCO3. The mixed Ca(HCO3)2/CaCO3(s) particles were insoluble with a growth factor of 1.03 at 95% (hygroscopicity parameter κ=0.011±0.007) relative humidity. This compares to a corresponding growth factor of 1.01 for CaCO3(s) (κ=0.0016± 0.0004). Mass spectrometric composition analysis, restructuring, and insolubility of the mixed particles suggested that solid Ca(HCO3)2(s) was observed. This would be in contrast to the current belief that Ca(HCO3)2(s) is thermodynamically instable. The CCN activity of Ca(HCO3)2(s) aerosol Correspondence to: Th. F. Mentel ([email protected]) (κ ≈ 0.15) is remarkably higher than that of CaCO3 aerosol (κ=0.0019±0.0007) and less than that of Ca(NO3)2. The noticeable but limited solubility of Ca(HCO3)2 of ≈ 0.01 mol/l explains limited hygroscopic growth and good CCN activity. Experiments in the Large Jülich Aerosol Chamber indicated that Ca(HCO3)2(s) could exist for several hours under dry atmospheric conditions. However, it was likely buried in a protective layer of CaCO3(s). We conclude that Ca(HCO3)2 may be formed in the atmosphere in cloud droplets of activated mineral dust by reaction of CaCO3 with CO2 and H2O. The presence of Ca(HCO3)2 and as a consequence an enhanced CCN activity may alter the influence of mineral aerosol on global climate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions.

Airborne mineral dust particles serve as cloud condensation nuclei (CCN), thereby influencing the formation and properties of warm clouds. It is therefore of atmospheric interest how dust aerosols with different mineralogy behave when exposed to high relative humidity (RH) or supersaturation (SS) with respect to liquid water. In this study the subsaturated hygroscopic growth and the supersatura...

متن کامل

Towards closing the gap between hygroscopic growth and CCN activation for secondary organic aerosols – Part 3: Influence of the chemical composition on the hygroscopic properties and volatile fractions of aerosols

The influence of varying levels of water mixing ratio, r , during the formation of secondary organic aerosol (SOA) from the ozonolysis of α-pinene on the SOA hygroscopicity and volatility was investigated. The reaction proceeded and aerosols were generated in a mixing chamber and the hygroscopic characteristics of the SOA were determined with the Leipzig Aerosol Cloud Interaction Simulator (LAC...

متن کامل

Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing.

The atmospheric effects of soot aerosols include interference with radiative transfer, visibility impairment, and alteration of cloud formation and are highly sensitive to the manner by which soot is internally mixed with other aerosol constituents. We present experimental studies to show that soot particles acquire a large mass fraction of sulfuric acid during atmospheric aging, considerably a...

متن کامل

The analysis of size-segregated cloud condensation nuclei counter (CCNC) data and its implications for cloud droplet activation

Ambient aerosol, CCN (cloud condensation nuclei) and hygroscopic properties were measured with a sizesegregated CCNC (cloud condensation nuclei counter) in a boreal environment of southern Finland at the SMEAR (Station for Measuring Ecosystem-Atmosphere Relations) II station. The instrumental setup operated at five levels of supersaturation S covering a range from 0.1–1 % and measured particles...

متن کامل

Incorporation of Advanced Aerosol Activation Treatments into CESM / CAM 5 : Model 1 Evaluation and Impacts on Aerosol Indirect Effects 2

12 One of the greatest sources of uncertainty in the science of anthropogenic climate change 13 is from aerosol-cloud interactions. The activation of aerosols into cloud droplets is a direct 14 microphysical link between aerosols and clouds; parameterizations of this process realistically 15 link aerosol with cloud condensation nuclei (CCN) and the resulting indirect effects. Small 16 differenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010